Calcium-dependent block of P2X7 receptor channel function is allosteric

نویسندگان

  • Zonghe Yan
  • Anmar Khadra
  • Arthur Sherman
  • Stanko S. Stojilkovic
چکیده

Among purinergic P2X receptor (P2XR) channels, the P2X7R exhibits the most complex gating kinetics; the binding of orthosteric agonists at the ectodomain induces a conformational change in the receptor complex that favors a gating transition from closed to open and dilated states. Bath Ca(2+) affects P2X7R gating through a still uncharacterized mechanism: it could act by reducing the adenosine triphosphate(4-) (ATP(4-)) concentration (a form proposed to be the P2X7R orthosteric agonist), as an allosteric modulator, and/or by directly altering the selectivity of pore to cations. In this study, we combined biophysical and mathematical approaches to clarify the role of calcium in P2X7R gating. In naive receptors, bath calcium affected the activation permeability dynamics indirectly by decreasing the potency of orthosteric agonists in a concentration-dependent manner and independently of the concentrations of the free acid form of agonists and status of pannexin-1 (Panx1) channels. Bath calcium also facilitated the rates of receptor deactivation in a concentration-dependent manner but did not affect a progressive delay in receptor deactivation caused by repetitive agonist application. The effects of calcium on the kinetics of receptor deactivation were rapid and reversible. A438079, a potent orthosteric competitive antagonist, protected the rebinding effect of 2'(3')-O-4-benzoylbenzoyl)ATP on the kinetics of current decay during the washout period, but in the presence of A438079, calcium also increased the rate of receptor deactivation. The corresponding kinetic (Markov state) model indicated that the decrease in binding affinity leads to a decrease in current amplitudes and facilitation of receptor deactivation, both in an extracellular calcium concentration-dependent manner expressed as a Hill function. The results indicate that calcium in physiological concentrations acts as a negative allosteric modulator of P2X7R by decreasing the affinity of receptors for orthosteric ligand agonists, but not antagonists, and not by affecting the permeability dynamics directly or indirectly through Panx1 channels. We expect these results to generalize to other P2XRs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of nifedipine and baclofen on spinal anesthesia induced by local anesthetics

The primary mode of action of local anesthetics is through sodium channel and axonal conduction blockade. Local anesthetics have also extensive effects on pre-synaptic calcium channels that must function to stimulate the release of neurotransmitters. Thus, interference with calcium channel conductance may enhance spinal anesthesia with local anesthetics. The present study was designed to invest...

متن کامل

The effect of nifedipine and baclofen on spinal anesthesia induced by local anesthetics

The primary mode of action of local anesthetics is through sodium channel and axonal conduction blockade. Local anesthetics have also extensive effects on pre-synaptic calcium channels that must function to stimulate the release of neurotransmitters. Thus, interference with calcium channel conductance may enhance spinal anesthesia with local anesthetics. The present study was designed to invest...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Q/R site editing controls kainate receptor inhibition by membrane fatty acids.

RNA editing within the pore loop controls the pharmacology and permeation properties of ion channels formed by neuronal AMPA and kainate receptor subunits. Genomic sequences for the glutamate receptor 2 (GluR2) subunit of AMPA receptors and the GluR5 and GluR6 subunits of kainate receptors all encode a neutral glutamine (Q) residue within the channel pore that can be converted by RNA editing to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 138  شماره 

صفحات  -

تاریخ انتشار 2011